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APPLICATION NOTE 30 

DFT or FFT? A Comparison of Fourier Transform 
Techniques 

 
This application note investigates differences in performance between the DFT (Discrete Fourier Transform) 
and the FFT(Fast Fourier Transform) from a mathematical and practical level when utilised for harmonic 
analysis of electrical waveforms. Exploration of the advantages and disadvantages of each algorithm, as well as 
determination of the best approach for harmonic analysis within a power electronics environment will be 
covered. With many Power Analyzers utilising the FFT and fewer utilising the DFT, the application note will 
investigate the reasons for the popularity of the FFT and the problems associated with it. 
 
Definition 
 
Fourier analysis is a mathematical method of representing a periodic waveform in terms of a series of 
trigonometric functions. The French mathematician and Physicist Mr Jean Baptiste Joseph, Baron De Fourier 
developed the Fourier analysis technique in the 18th~19th centuries. 
 
Fourier analysis is used in many industries, electronics, mechanical engineering, acoustic engineering and 
much more. This application note will apply Fourier analysis to the decomposition of AC periodic waveforms. 
This is commonly used within electronics to determine the distortion of a waveform by representing a time 
varying periodic signal as a discrete number of "harmonics". 
 
Periodic Functions 
 
A periodic function should be considered as a "repeating pattern", where at time nT, for all integer values of n, 
and T equal to the repetition period the waveform, the following is true; 
 
𝑓(𝑥 + 𝑛𝑇) = 𝑓(𝑥)          (1) 
 
For example : 
 

𝑦 = sin(𝑥)is periodic in 𝑥 with a period of 2𝜋, if 𝑦 = sin(𝜔𝑡) then the period of the waveform is 
2𝜋

𝜔
 where 

𝜔 = 𝑝𝑒𝑟𝑖𝑜𝑑𝑖𝑐 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 (2𝜋𝑓) 
 

For a frequency of 10Hz, 𝜔 = 20𝜋
𝑟𝑎𝑑𝑠

𝑠𝑒𝑐
 therefore the fundamental time period T is 

2𝜋

20𝜋
= 0.1𝑠𝑒𝑐𝑜𝑛𝑑𝑠. 

 

𝑦 = sin(𝜔(𝑡 + 𝑛𝑇))          (2) 

 
The magnitude of the waveform at initial time 𝑡 = 0.021 is calculated, as well as the subsequent magnitudes 
at time 𝑡 + (𝑛 ∗ 𝑇) 
 

sin(20𝜋(0.021 + 𝑛 ∗ 0.1))         (3) 
 
 

n=0 n=1 n=2 

0.969 0.969 0.969 

 
A sine wave is known as a continuous function, it does not exhibit any sudden jumps or breaks. Whereas other 
waveforms, such as the square wave exhibits finite discontinuities. An advantage of the Fourier series is that it 
can be applied to both continuous and discontinuous waveforms. 
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Fourier Series 
 
The fundamental basis of the Fourier series is that a function defined within the interval −𝜋 ≤ 𝑥 ≤  𝜋 can be 
expressed as a convergent trigonometric series in the following form; 
  
 

𝑓(𝑥) = 𝑎0 + 𝑎1𝑐𝑜𝑠𝑥 + 𝑎2𝑐𝑜𝑠2𝑥 + 𝑎3𝑐𝑜𝑠3𝑥 + ⋯ + 𝑏1𝑠𝑖𝑛𝑥 + 𝑏2𝑠𝑖𝑛2𝑥 +  𝑏3𝑠𝑖𝑛3𝑥 + ⋯  
 

𝑤ℎ𝑒𝑟𝑒 𝑎0, 𝑎1, 𝑎2, 𝑎3 … 𝑏1, 𝑏2, 𝑏3 … 𝑎𝑟𝑒 𝑟𝑒𝑎𝑙 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡𝑠 
 
This can be simplified to the following; 
 
𝑓(𝑥) =  𝑎0 + ∑ (𝑎𝑛 cos 𝑛𝑥 + 𝑏𝑛 sin 𝑛𝑥)∞

𝑛=1                 (4) 
 
For the range −𝜋 𝑡𝑜 𝜋; 
 

𝑎0 =
1

2𝜋
∫ 𝑓(𝑥)𝑑𝑥

𝜋

−𝜋
            (5) 

 

𝑎𝑛 =
1

𝜋
∫ 𝑓(𝑥) cos  𝑛𝑥 𝑑𝑥

𝜋

−𝜋
     (𝑛 = 1, 2, 3 … )       (6) 

 

𝑏𝑛 =
1

𝜋
∫ 𝑓(𝑥) sin  𝑛𝑥 𝑑𝑥

𝜋

−𝜋
     (𝑛 = 1, 2, 3 … )       (7) 

 
An alternative way of writing the Fourier series above, which is of more relevance to digital signal processing 
of complex electrical waveforms is derived from the following relationship; 
 
𝑎 cos 𝑥 + 𝑏 cos 𝑥 = 𝑐 sin (𝑥 +  𝛼)           (8) 
 
Applying this to the Fourier series; 
 
𝑓(𝑥) =  𝑎0 + 𝑐1 sin(𝑥 +  𝛼) +  𝑐2 sin(2𝑥 +  𝛼2) +  … +  𝑐𝑛sin (3𝑥 + 𝛼𝑛)      (9) 
 

𝑎0𝑖𝑠 𝑎 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 
 

𝑐1 =  √𝑎1
2 +  𝑏1

2, … . 𝑐𝑛 =  √𝑎𝑛
2 +  𝑏𝑛

2       are the magnitudes of each coefficient    (10) 
 

𝛼𝑛 = arctan (
𝑎𝑛

𝑏𝑛
)     is the phase offset of each coefficient      (11) 

 
𝐶𝑛 represents the magnitude of the nth component, or nth harmonic. When n = 1, the harmonic is known as the 
fundamental. 
 
𝛼𝑛represents the phase angle of the nth harmonic. 
 
It is at this point that all of the mathematical tools required to decompose a periodic waveform have been 
derived. 
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Mathematical Example, 2Vpk Square Wave 
 
In this example a 2Vpk (4Vpk-pk) square wave is decomposed into its constituent harmonics. 
 

 
Fig 1. 

 
The function for the above waveform is given by; 
 

𝑓(𝑥) =  {
−2,        𝑤ℎ𝑒𝑛 − 𝜋 < 𝑥 < 0

2,         𝑤ℎ𝑒𝑛 0 < 𝑥 <  𝜋
 

 
As the pure square wave function is discontinuous, the integration will be performed in two discrete halves. 
One from -π to 0 and another from 0 to π. 
 

𝑎0 =
1

2𝜋
∫ 𝑓(𝑥)𝑑𝑥

𝜋

−𝜋
            (12) 

 

𝑎0 =
1

2𝜋
[∫ −2 𝑑𝑥 + 

0

−𝜋
∫ 2 𝑑𝑥] 

𝜋

0
           (13) 

 

𝑎0 =
1

2𝜋
{[−2𝑥]−𝜋

0 +  [2𝑥]0
𝜋} = 0         (14) 

 
𝑎0  equates to the mean value of the waveform (DC offset in electrical terms) over the complete fundamental 

period. 
 

 

𝑎𝑛 =
1

𝜋
[∫ −2 cos  𝑛𝑥 𝑑𝑥 +  ∫ 2 cos  𝑛𝑥 𝑑𝑥 ] 

𝜋

0
 

0

−𝜋
       (15) 

 
 

𝑎𝑛 =
1

𝜋
[−

2 𝑠𝑖𝑛 𝑛𝑥

𝑛
] 0

−𝜋
+  [

2 𝑠𝑖𝑛 𝑛𝑥

𝑛
] 𝜋

0
 = 0        (16) 

 
Therefore, 𝑎1, 𝑎2, 𝑎3 … 𝑎𝑟𝑒 𝑎𝑙𝑙 𝑧𝑒𝑟𝑜. 

 
 

𝑏𝑛 =
1

𝜋
[∫ −2 sin  𝑛𝑥 𝑑𝑥 +  ∫ 2 𝑠𝑖𝑛 𝑛𝑥 𝑑𝑥 ] 

𝜋

0
 

0

−𝜋
       (17) 

 
 

𝑏𝑛 =
1

𝜋
[

2 𝑐𝑜𝑠 𝑛𝑥

𝑛
] 0

−𝜋
+  [

−2 𝑐𝑜𝑠 𝑛𝑥

𝑛
] 𝜋

0
 = 0        (18) 

 
 
 

when n is odd 
 

𝑏𝑛 =
2

𝜋
{[(

1

𝑛
) − (−

1

𝑛
)] +  [− (−

1

𝑛
) − (−

1

𝑛
)]}       (19) 
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𝑏𝑛 =
𝑘

𝜋
{

2

𝑛
+

2

𝑛
} =

4𝑘

𝑛𝜋
          (20) 

 

𝑎𝑠 𝑘 = 2,     𝑏𝑛 =
8

𝑛𝜋
          (21) 

 

Therefore 𝑏1 =
8

𝜋
      ,      𝑏3 =

8

3𝜋
      ,      𝑏5 =

8

5𝜋
 

 
 
 

when n is even 
 

𝑏𝑛 =
2

𝜋
{[(

1

𝑛
) − (

1

𝑛
)] +  [− (

1

𝑛
) − (−

1

𝑛
)]} = 0       (22) 

 
𝑏1, 𝑏2, 𝑏3 …  = 0 

 
 
Therefore, the Fourier series for the 2Vpk square wave is as follows; 
 
𝑓(𝑥) =  𝑎0 + ∑ (𝑎𝑛 cos 𝑛𝑥 + 𝑏𝑛 sin 𝑛𝑥)∝

𝑛=1         (23) 
 
𝑓(𝑥) = 0 +  ∑ (0 + 𝑏𝑛 sin 𝑛𝑥)∝

𝑛=1          (24) 
 

𝑓(𝑥) =
8

𝜋
𝑠𝑖𝑛𝑥 +

8

3𝜋
𝑠𝑖𝑛3𝑥 +

8

5𝜋
𝑠𝑖𝑛5𝑥 + ⋯         (25) 

 

𝑓(𝑥) =  
8

𝜋
(𝑠𝑖𝑛𝑥 +

1

3
𝑠𝑖𝑛3𝑥 +

1

5
𝑠𝑖𝑛5𝑥 + ⋯ )        (26) 

 
The magnitude and phase of each harmonic can be computed as follows; 
 
 

𝑐𝑛 =  √𝑎𝑛
2 +  𝑏𝑛

2       are the magnitudes of each coefficient      (27) 
 

𝛼𝑛 = arctan (
𝑎𝑛

𝑏𝑛
)     is the phase offset of each coefficient      (28) 

 
For the 3rd harmonic; 
 

𝑐3 =  √02 +
8

3𝜋

2
=

8

3𝜋
                 (29) 

𝛼𝑛 = arctan (
0

(
8

3𝜋
)
) = 0°              (30) 

 
3rd Harmonic = 0.85V, 0°  
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Harmonic Analysis 
 
It is widely known that many of the waveforms within the electronics industry can be represented by simple 
mathematical expressions. By utilising the Fourier series, the magnitude and phase of the harmonics can be 
derived. Some waveforms do not fit into this category and analysis of such waveforms is performed through 
numerical methods. Harmonic Analysis is the process of resolving a periodic, non-sinusoidal waveform into a 
series of sinusoids of increasing order of frequency. 
 
Following on from the mathematical expressions derived earlier in this application note, a numerical method is 
now presented which introduces the fundamentals behind the approach used within harmonic analyzers. 
 
Ultimately, Fourier coefficients a0, an and bn will need to be determined - see equations (5), (6) and (7), this will 
require integration. 
 
Numerically, the integral functions (5), (6) and (7) can be described as mean values, as follows; 
 

𝑎0 =
1

2𝜋
∫ 𝑓(𝑥)𝑑𝑥 =  

1

2𝜋
∫ 𝑓(𝑥)𝑑𝑥

2𝜋

0

𝜋

−𝜋
          (5) 

 
𝑎0 = 𝑚𝑒𝑎𝑛 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝑓(𝑥)         (31) 
    
 
 

𝑎𝑛 =
1

𝜋
∫ 𝑓(𝑥) cos  𝑛𝑥 𝑑𝑥 =  

1

𝜋
∫ 𝑓(𝑥) cos  𝑛𝑥 𝑑𝑥

2𝜋

0

𝜋

−𝜋
     (𝑛 = 1, 2, 3 … )    (6) 

 
𝑎𝑛 = 𝑡𝑤𝑖𝑐𝑒 𝑚𝑒𝑎𝑛 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝑓(𝑥) cos 𝑛𝑥        (32) 
 

 
 

𝑏𝑛 =
1

𝜋
∫ 𝑓(𝑥) sin  𝑛𝑥 𝑑𝑥

𝜋

−𝜋
     (𝑛 = 1, 2, 3 … )       (7) 

 
𝑏𝑛 = 𝑡𝑤𝑖𝑐𝑒 𝑚𝑒𝑎𝑛 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝑓(𝑥) sin 𝑛𝑥        (33) 
 
This integration is performed within the signal processing elements of a harmonic analyzer (traditionally a DSP) 
with the trapezoidal rule. As most waveforms within the realm of electronics are periodic, the period of the 
waveform can be referred to as w (window), which can be divided up into s (sample points) of equal parts. 
Where d(time delta)  is the time interval in between the sample points. 
 
A complex waveform is now used as an example (fig.2) to illustrate how the waveform is sampled and 
numerical Fourier analysis methods are explained. 
 

 
Fig 2. 
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Fig 3. 

 
𝑛 = 𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑒𝑠, 𝑖𝑡ℎ𝑠𝑎𝑚𝑝𝑙𝑒, 𝑑 = 𝑡𝑖𝑚𝑒 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 

 

𝑎0 = 𝑀𝑒𝑎𝑛 𝑉𝑎𝑙𝑢𝑒 =
𝑎𝑟𝑒𝑎

𝑙𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑏𝑎𝑠𝑒
=

1

2𝜋
∗ (

2𝜋

𝑛
) ∑ 𝑣[𝑖]

𝑛

𝑖=1

=
1

𝑛
∑ 𝑣[𝑖]

𝑛

𝑖=1

 

 

𝑎𝑛 =
1

𝑛
∑ 𝑣[𝑖] cos (

2𝜋ℎ𝑖

𝑛
) 

𝑛

𝑖=1

 

 

𝑏𝑛 =
1

𝑛
∑ 𝑣[𝑖] sin (

2𝜋ℎ𝑖

𝑛
) 

𝑛

𝑖=1

 

 
In electrical terms, a0 is the DC offset, an is the quadrature component of the nth harmonic, and bn is the in-
phase component of the nth harmonic. 
 
Simple trigonometry can be applied to derive the magnitude and phase of the harmonics. 
 
 
 
 

(34) 

(35) 

(36) 
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As equations 35 and 36 represent the mean value of the harmonics, it is common to refer to the equivalent 

RMS values, a scale factor of √2 is applied to achieve this. 
 

𝑎𝑛 =
√2

𝑛
∑ 𝑣[𝑖] cos (

2𝜋ℎ𝑖

𝑛
) 

𝑛

𝑖=1

 

 

𝑏𝑛 =
√2

𝑛
∑ 𝑣[𝑖] sin (

2𝜋ℎ𝑖

𝑛
) 

𝑛

𝑖=1

 

 
Harmonic analyzers make use of the trapezoidal rule to closely approximate the true value of the harmonic 
magnitudes. It is logical to assume that a higher sample rate results better accuracy and although this is the 
case in simplistic terms, the reality is more complicated as averaging reduces the effect of lower sample rates. 
That being said, as per Nyquist's theorem, the sampling rate must be twice that of the bandwidth of the 
measured signal. 
 
FFT Application 
 
All previous content within this application note represents the DFT, this could be considered the purest of 
Fourier transforms and is the original Fourier transform. In 1965 Cooley and Tukey published the generic FFT 
algorithm and the drive for this development was not improved accuracy but it was improved computation 
time. 
Whilst the FFT required less processing power, in a real world measurement environment it is difficult for the 
FFT to provide the same accuracy as the DFT. The reasons for this are due to the fact that the FFT is restricted 
(by the nature of its "divide and conquer" mathematical approach) to a window size of 2n samples. If the 
sample rate were infinitely variable, and the fundamental frequency of the waveform to be analysed already 
known - then it would be possible to vary the sample rate in order to ensure an integer number of cycles are 
encompassed within the sampling window. As it is not practical in a real time measurement environment to 
infinitely vary the sample rate, it is almost impossible to ensure an integer number of cycles are encompassed 
by the sampling window. 
 
Important note : If an exact integer number of cycles were able to be encompassed within the data acquisition 
window of the FFT then this algorithm would provide similar accuracies to the DFT. The restriction of 2n 
samples and fixed/discrete sample rates means this is impractical and the FFT cannot offer the same flexibility 
and accuracy in a real time measurement environment. The result of incomplete cycles within the sampling 
window is known as "harmonic leakage", in which harmonics "leak" into adjacent harmonic neighbours, 
causing inaccuracies in the calculated results. 
 
In the analysis below, a 1024 point FFT was sampled at 10ks/s upon a 100Vpk, 25Hz waveform. Due to the 
nature of the FFT and its restriction to 2n samples, at this sample rate (which provides 5kHz measurement 
bandwidth - Nyquist's theorem) it is clear that the data acquisition window does not encompass an integer 
number of samples, the additional undesirable samples are shown in the red box in fig 4. 
 
 
 
 
 
 
 
 
 
 
 
If an FFT harmonic spectrum analysis is performed, significant harmonic leakage is evident as a result of the 
non-integral cycle acquisition. 
 

(38) 

(37) 

Fig 4. 
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Fig 5. 

 
 
Various complex waveforms are now analyzed and results from FFT and DFT algorithms are compared. 
 
If the data acquisition window encompasses an integer number of cycles, the harmonic leakage is significantly 
reduced. Although this is unrealistic in a dynamic, real time measurement environment this is performed for 
clarity of the mathematics in fig 6 and fig 7. 
 

 
Fig 6. 

 

 
Fig 7. FFT Analysis with ideal window size 

 
 

 
If the frequency detection or sample rate limitation (and subsequent window size) drifts by only 3~4Hz, the 
errors introduced into the FFT are quite significant. The graphs below illustrate this effect; 
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Fig 8. 

 

 
Fig 9. 

 
Harmonic 1 (Fundamental) is significantly lower than the 100Vpk original component, there is also significant 
leakage into other harmonics which in reality have no spectral voltage components. 
 
This is caused by the fact that the "sine and cosine" multiplication of the FFT is not performed at the correct 
harmonic frequencies, the fundamental component is in fact a 29.3Hz sine and cosine multiplication. The FFT 
frequencies are derived from the sample rate and the window size. 
 

𝐹𝐹𝑇 𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 = 𝑛 ∗ (
𝑓𝑠

𝑠𝑎
) 

 
𝑛 = 𝑠𝑎𝑚𝑝𝑙𝑒 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝑛𝑢𝑚𝑏𝑒𝑟 1,2,3 … 1024,           𝑓𝑠 = 𝑠𝑎𝑚𝑝𝑙𝑒 𝑟𝑎𝑡𝑒,          𝑠𝑎 = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑒𝑠  

 
The FFT frequency denotes the actual sine cosine calculation, if the sample frequency is not infinitely 
adjustable the FFT frequencies will be close but not completely matching the actual harmonic frequencies. 
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Error in FFT calculation 
 

Harmonic Frequency 
Actual 
(Vpk) 

Calculated with 
FFT Error % 

Fundamental 30.3Hz 100 97.25 2.75 

2 60.6Hz 0 4.38   

3 90.9Hz 0 2.65   

4 121.2Hz 0 2.64   

5 151.5Hz 20 12.68 36.59 

6 181.8Hz 0 2.57   

Table 1. 
 

The further the fundamental frequencies drift from the FFT frequency, the greater the leakage and greater the 
error in the measured harmonics. 
 
To Illustrate this effect, a fundamental frequency of 31.3Hz (equating to a drift of 2Hz) results in the following 
spectral analysis and subsequent errors. 
 

 
Fig 10. 

 

Harmonic Frequency 
Actual 
(Vpk) 

Calculated with 
FFT Error % 

Fundamental 30.3Hz 100 92.49 7.51 

2 60.6Hz 0 7.62   

3 90.9Hz 0 3.95   

4 121.2Hz 0 2.67   

5 151.5Hz 20 1.67 91.67 

6 181.8Hz 0 2.03   

Table 2. 
 
As previously mentioned, it is impractical to achieve an exact integer number of waveform periods to fit within 
the data acquisition window when using the FFT in a dynamic environment. It is therefore not desirable to 
utilise the FFT Fourier analysis technique in modern day power analysis. There are windowing methods 
available to the engineer which will reduce the spectral leakage, these algorithms will improve values at some 
frequencies but also worsen values at other frequencies. Ultimately, none of the windowing algorithms 
available when applied to an FFT will match the accuracy of the DFT. 
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DFT (Discrete Fourier Transform) 
 
The Discrete Fourier transform is able to resolve its sampling window to any integer number of samples, this 
equates to; 

𝑤𝑖𝑛𝑑𝑜𝑤 𝑟𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 =
1

𝑓𝑠
 

 
In the time domain, this equates to a time resolution of 100uS for a 10ks/s sample rate.  
 
If a 50Hz waveform is considered, its time period is 20ms. A 100us time resolution enables the window to 
perfectly encompass both a 50Hz and 50.25Hz, it is logical to conclude that a higher sample rate will result in 
greater frequency resolution as well as higher bandwidth, if multiple cycles are used this resolution is further 
improved.  
 
Newtons4th power analyzers feature sample rates of 1Ms/s and above, coupled with very accurate analogue 
performance, this provides extremely sensitive and accurate harmonic analysis with fast update rates. 
 
Newtons4th Frequency resolution on a 50Hz waveform 
 

𝑁4𝐿 𝑃𝑃𝐴5500 𝑤𝑖𝑛𝑑𝑜𝑤 𝑟𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛(𝑐𝑦𝑐𝑙𝑒 𝑏𝑦 𝑐𝑦𝑐𝑙𝑒) =
1

2𝑀𝑠/𝑠
=

1

2 ∗ 106
= 500𝑛𝑆 

 

𝑁4𝐿 𝑃𝑃𝐴5500 𝑐𝑦𝑐𝑙𝑒 𝑏𝑦 𝑐𝑦𝑐𝑙𝑒 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝑟𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑜𝑛 50𝐻𝑧 𝑤𝑎𝑣𝑒𝑓𝑜𝑟𝑚 = 50 − (
1

0.02 + 500 ∗ 10−9
) 

 
= 50 − 49.99875 = 0.001𝐻𝑧  

 
The same waveform illustrated in fig.10 was used and a DFT was performed, for an appropriate comparison 
the same 10ks/s sample rate was used.  
 
When utilising a DFT waveform, it is possible to synchronise the data acquisition window to the fundamental 
time period with a resolution of 1 sample point. Once this is performed, the DFT is able to calculate the 
harmonic components of the waveform very accurately. In this example the fundamental time period is 
calculated as follows; 
 

𝐹𝑢𝑛𝑑𝑎𝑚𝑒𝑛𝑡𝑎𝑙 𝑇𝑖𝑚𝑒 𝑃𝑒𝑟𝑖𝑜𝑑 =
1

𝑓𝑓𝑢𝑛𝑑

=
1

31.3
= 0.0319 𝑠𝑒𝑐𝑜𝑛𝑑𝑠 

 
The number of samples required to synchronise the data acquisition window to the fundamental time period is 
calculated as follows; 
 

𝑁𝑜 𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑 =
𝑓𝑢𝑛𝑑 𝑡𝑖𝑚𝑒 𝑝𝑒𝑟𝑖𝑜𝑑

𝑠𝑎𝑚𝑝𝑙𝑒 𝑡𝑖𝑚𝑒 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙
=

0.0319

1
10000

=  319.489 

 
The closest integer number of samples calculated is used as the data window acquisition size, N4L power 
analyzers compute the fundamental frequency "real-time" with a proprietary frequency detection algorithm 
within a dedicated DSP. 
 
It should be apparent that for the DFT to be successful, frequency detection is of paramount importance, as all 
N4L power analyzers utilise sample rates in excess of 1Ms/s, it is clear that the window and subsequent 
frequency resolution will be very accurate. 
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Fig 11. 

 

 
Fig 12. 

 
Figure 11 and Figure 12 illustrate the effectiveness of the DFT even when utilising low sample rates and a 
single cycle. Higher sample rates and multiple cycle analysis will achieve greater accuracies through better 
window synchronisation (providing frequency detection is accurate) as well as greater averaging. 
 

Harmonic Frequency 
Actual 
(Vpk) 

Calculated with 
DFT 

Error 
% 

1 31.300 100.000 100.063 0.063 

2 62.600 0.000 0.175   

3 93.900 0.000 0.057   

4 125.200 0.000 0.056   

5 156.500 20.000 20.077   

6 187.800 0.000 0.447 0.447 

 
Table 3. 

 
 
The calculated error achieved with the DFT is significantly better than the equivalent FFT, further benefits of 
the DFT include the flexibility of the data acquisition window providing cycle by cycle analysis of any waveform 
without the restrictions of 2n FFT windowing. 
 
 
 
 
 



 

DFT or FFT? A Comparison of Fourier Transform Techniques July 2020 Doc ref: D000127 2 

Newtons4th Ltd    1 Bede Island Rd    Leicester   LE2 7EA   UK    Tel: +44 (0)116 2301066 

 

Reference Measurements 
 
An N4L PPA5500 Precision Power Analyzer, which utilises a DFT Harmonic Analysis algorithm was bench tested 
against the Fluke 6105A power standard. The tests were carried out within the UKAS ISO17025 Test Laboratory 
(Lab no. 7949) based at N4L Headquarters in the UK, results from the tests are shown below; 
 
 

Fluke 6015A Calibration of PPA5530 Power Analyzer - No 
Adjustment 

Harmonic Frequency 
Applied 

(Vpk) 
Measured Error Uncertainty 

1 31.3 100 99.977 0.02% 0.01% 

2 62.6 0 <10mV NA NA 

3 93.9 0 <10mV NA NA 

4 125.2 0 <10mV NA NA 

5 156.5 20 19.994 0.03% 0.03% 

6 187.8 0 <10mV NA NA 

  
The errors above represent the total error of the measurement instrument, including the error of the analogue 
input channels. This calibration procedure demonstrates the power of the DFT when combined with extremely 
linear analogue input design. 
 
Summary 
 
Whilst the FFT has its place within the electrical engineering field, for high accuracy power analysis the FFT is 
not the optimum solution. A high end power analyzer will need to meet the demands of modern industry in 
which harmonic distortion of varying fundamental frequencies is required to be measured. 
 
It is the responsibility of the power analyzer manufacturer to integrate sufficiently powerful processors and 
innovative digital signal processing techniques in order to meet the computational demands of the DFT. 
 
All N4L power analyzers have been developed with this approach in mind and years of experience fine tuning 
both analogue hardware performance and DFT signal processing algorithms have resulted in an extremely 
accurate solution under a wide range of input waveforms. 
 
For more information about any of the Newtons4th Power Analyzers, visit 
http://www.newtons4th.com/products/power-analyzers/ 
 
Author : Sales and Applications Engineering, Newtons4th Ltd, UK 
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